To the Attendees and Organizers of the 2009 Land Conservation and Clean Water Summit:

Thank-you for the warm invitation to attend the 2009 Summit; however it is with deep regret that I am unable to attend this year’s meeting. The issues involved, as well as the meeting being held in Minnesota, and organized by Minnesotan groups, will make this a very exciting meeting indeed.

As many of you know, I had hoped to provide comments on the role and future of green infrastructure in our water infrastructure system. Instead, I’ll use this correspondence as an opportunity to talk with you all about the future of this technology as well as some of our ongoing legislative efforts regarding wastewater infrastructure.

Wastewater infrastructure plays a vital role in maintaining our nation’s economic, environmental, and public health. Yet, it is an area that has been sorely neglected over the past decade. When the Committee on Transportation and Infrastructure, which I now Chair, passed the Clean Water Act in 1972, we recognized the central role that upgraded wastewater treatment systems and facilities play in keeping the nation’s waterways clean. The Committee that I now Chair recognized the central role that upgraded wastewater treatment systems and facilities play in keeping the nation’s waterways clean when it passed the Clean Water Act in 1972. However, an unwillingness to invest in an aging national infrastructure has left our wastewater systems stressed and broken. Their current state of disrepair threatens to erase the gains made through implementation of the Clean Water Act, and places the public’s health at risk. Wastewater treatment facilities have been forced to make do with what they have. This includes the use of inefficient technologies and operational approaches that have been used for almost a century.

Wastewater treatment facilities are among the largest consumers of energy across the country. The U.S. Environmental Protection Agency estimates that approximately $4 billion is spent annually on energy costs to operate water and wastewater utilities. The Department of Energy’s Energy Information Administration estimates that water utility energy consumption is between 30 to 60 percent of a city’s energy bill. In these stressed economic times, municipalities are therefore challenged on two fronts: not only are they devoting significant resources towards energy costs, they are saddled with an increasing share of the costs for maintaining their wastewater infrastructure.
On the stormwater front, our infrastructure lags as well. Combined Sewer Overflow events (CSOs) remain a significant source of water impairment throughout the United States. The continued direct discharge of untreated or partially treated sewage and stormwater into our nation's waters strikes at the very heart of the modern Clean Water Act. Yet, the traditional way of addressing these overflows – which oftentimes entails significant capital investment both in separating storm and sanitary flows and in storing peak wet weather flows – and the capital costs involved, can overwhelm many small- and mid-sized communities.

For example, in Chicago, the project construction lifespan of their deep tunnel will be over forty years by the time it is completed in 2019. It is expected to cost the city $3.4 billion. Portland, Oregon's tunnel is expected to be completed in 2011, and will have taken 20 years to complete, at a price-tag of $1.4 billion. In this time of financial distress, and economic uncertainty municipalities are hard-pressed to dedicate their precious fiscal resources to these types of projects – as important as they may be.

In terms of both energy and stormwater we can and must do better.

Sustainable wastewater infrastructure includes both water efficiency and energy efficient technologies. The promotion of these concepts can have very real impacts on the operating costs of a treatment facility, and, in turn, on the fiscal situation of a community. Very small changes in either operations or equipment can result in significant energy savings. And small moves towards energy efficiency can yield very large and positive financial impacts. For example, the EPA notes that a 10 percent reduction in energy usage at water utilities could result in $400 million and 5 billion kilowatt hours in annual savings.

Not only does energy efficiency result in energy cost savings, it also means that wastewater utilities will be responsible for fewer greenhouse gas emissions. As a sector of the economy responsible for a high proportion of energy use, increases in energy efficiency can result in demonstrable progress in mitigating against climate change.

A similarly promising alternative approach for stormwater discharges is the adoption of green infrastructure, or low impact development, approaches and technologies. These approaches turn the whole notion of stormwater mitigation on its head. Instead of assuming that the volume of stormwater is fixed, and creating engineered solutions from there, green infrastructure approaches use natural processes to try to decrease the amount of stormwater that even enters the stormwater conveyance system. If less stormwater enters the system, municipalities will be able to construct smaller conveyances to contain stormwater discharges. This means fewer financial expenditures for communities, and jobs that can be completed more quickly.

Central to all green infrastructure technologies and approaches is the use of the landscape to manage stormwater by capturing and retaining water, infiltrating runoff, allowing for evapotranspiration, and trapping and filtering constituent pollutants. Examples of these technologies or approaches include: green roofs; downspout disconnection programs; urban tree planting; adding green space; permeable pavements; and curb cut-outs.

Through the American Recovery and Investment Act, the Congress and the Administration have already committed to providing a significant increase in resources to the resuscitation of our vital water infrastructure systems. This legislation – critical to reinvigorating the economy – provided
more $4 billion to the nation’s clean water infrastructure. This includes dedicated funding for both energy and stormwater-oriented green infrastructure. Similarly, in the spring of this year, the U.S. House of Representatives passed the Water Quality Investment Act of 2009. When the Senate acts, this will be the first reauthorization of the primary clean water infrastructure funding program, the Clean Water State Revolving Fund (SRF) program, since 1987. It includes historic authorized funding levels to the tune of $13.8 billion over five years. This will be the largest infusion of funding to the Clean Water SRF in history.

Sustainable technologies and approaches exist for increasing water and energy efficiency and conservation, mitigating stormwater runoff through infiltration, and promoting “green” planning, design, and construction. All of these can yield a more effective, more efficient, and more economically feasible approach to achieving our environmental and public health goals. Now we must continue working together to ensure that the federal government provides more financial and technical resources, and encourage states and localities to incorporate these innovative technologies. Doing so will go a long way towards maintaining our commitment to clean water.

Sincerely,

James L. Oberstar, M.C.
Chairman